
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Conference on Advances in Engineering and Technology

(AET- 29th March 2014)

Maharishi Markandeshwar University 46 | P a g e

Quality Model For Analysis And Implentation Of CK Metrics

Through Neural Networks

*Ashish Oberoi, **Deepti Arora
*
Deptt. of Computer Science & Engg.,MMEC, Mullana

**
Deptt. of Computer Application, Panipat Institute of Engg. & Technology, Samalkha

ABSTRACT
Component engineering addresses the issues of component’s specification, development, qualification,

documentation, cataloguing, and adaptation and selection for reuse. In general, software systems implement

functional and non-functional requirements. This implies that component specification methods and

qualification techniques should support both functional and non-functional requirements. The paper proposed a

model for analyzing CK metric values of component-based software by systematically analyzing a series of

metrics using CK metrics analysis and several key inferences are drawn from them. Software component design

patterns are used for analyzing various metrics and drawing a number of useful conclusions by evaluating them,

which will include inferences on reusability of the underlying components. By using a Self Organizing Map

(SOM), empirical evaluation of CK metric component models is done that figure out various matrices which

affects the performance of Component based Software Engineering Model and made a try to propose a model

that by selecting what metrics of component model gives optimized metric values.

Keywords: Component Based Software Engineering (CBSE); Component Based Development (CBD), Neural

Network(NN).

I. INTRODUCTION
Software reuse has long been one of the

major issues in the world of software engineering.

The reason is obvious. Software reuse can

dramatically increase the productivity of the software

community, ease maintenance, and improve product

reliability. Although most people would agree upon

the importance of reuse, it is only today that it has

become a main goal in software engineering. As a

result, many software reuse technologies have been

developed over the past few years. A popular reuse

technique in the object-oriented programming

community is design patterns. Design patterns

represent a recurring solution to a software

development problem within a particular context.

They have frequently been used to guide the creation

of abstractions in the software design phase,

necessary to accommodate future changes and yet

maintain architectural integrity. These abstractions

help us de-couple the major components of the

system so that each component may vary

independently.

Component-Based Software Engineering

(CBSE) is a systematic and structured approach that

allows software engineers to maximize reusability.

 Fig 1: Concept and Benefits of CBSD

CBSE is also known as Component-based

Software Development (CBSD) concept and benefits

of CBSD are shown in Fig 1.

In principle, CBSD should provide a

software organization with advantages in higher

productivity, reduced time to market; reduce the cost

of development and higher quality system. The

ensuring of quality of a component based system is an

important task because unlike tradition software

systems, the quality of a component based system

depends both on the quality of its components and the

framework being used. The development process and

the maturity of an organization also influence the

quality of component based products. Hence, it is easy

to perceive that the quality of its components, directly

RESEARCH ARTICLE OPEN ACCESS

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Conference on Advances in Engineering and Technology

(AET- 29th March 2014)

Maharishi Markandeshwar University 47 | P a g e

or indirectly, influence the quality of the final

software. CBSE is an extension of object-oriented

concepts such as encapsulation (information hiding),

abstraction (what an element is and how it should be

implemented), polymorphism (same operation behave

differently on different elements), Inheritance (sharing

of operation and attributes among elements based on

hierarchal relationships). CBSE provides many

advantages like:

• Component-based software development can

increase the productivity of software developers.

Component-based software is constructed by

assembling existing reusable components. This

process is much faster than writing an application

from scratch.

• Component-based software development offers

higher quality, more reliable software. The main

reason is that reusable components have been

tested and therefore their quality can be assured.

• Component technology can ease software

maintenance. Component-based software means

that a large software application can be made of

many small components. A task for maintaining a

large software application can be partitioned to

many smaller and easier tasks for maintaining

components.

• Component technology makes it easier to manage

software development. Component partitioning

enables parallel development, allowing several

organizations to be involved in development of

larger and more complex software.

• Because component technology implies some

base set of standards for infrastructure service, a

large application can depend on these standards

thereby saving considerable time and effort.

The fundamental concepts on which CBSE is

based are:

1.1 Component

The word “component” is used very broadly

and often loosely throughout the software industries.

Generically, a component is defined as a

computational unit. Components can be things like

clients and servers, databases, filters, and layers in a

hierarchical system.

“A software component is a unit of

composition with contractually specified interfaces

and explicit context dependencies only. A software

component can be deployed independently and is

subject to composition by third party”. Main points of

this definition indicate that component can be

deployed independently and each component interacts

with other component(s) by using interfaces [7]. Other

definition of component is:

“A component is a coherent package of

software that can be independently developed and

delivered as a unit, and that offers interfaces by which

it can be connected, unchanged, with other

components to compose a larger system”.

Component-based software development means

building software by assembling or gluing

components together. Fundamental characteristics of

components are presented as:

 Independent: A component must be independent

from its environment and is deployed without

needs of other specific components.

 Standardized: In CBSE approach a component

should follow deployment and composition rule.

 Deployable: For a component to be deployable, a

component has to be self contained and must be

able to perform as a stand-alone entity on some

component platform that implements the

component model. Usually a component is a

binary component and cannot be compiled before

its deployment.

 Documented: A component should be specified

formally.

 Composable: A component communicates with

others through its public interfaces. Also, it must

provide external access to information about itself

such as its methods and attributes.

1.2 Interface

“An interface of a component can be defined

as a specification of its access point”. An interface is a

set of functional properties which includes set of

actions understandable by both interface provider

(component) and user (other components or other

software that interact with provider). Clients access

the services that are provided by a component through

access points. A component may have more than one

access point, which contains different services

provided by that component. Therefore, a component

may have more than one interface. Since components

are black box, their implementation detail is not

accessible from outside [9].

II. LITERATURE REVIEW
A continuous research is continuing on

Component Based Software Engineering model. A

brief review of the work done in the past is elaborated

here:

In [2], authors presented a survey of

component-based development and reuse driven

development life cycles. The proposed model contains

all the needed activities towards a complete

component-based development lifecycle. A

comparison between ICBD, normal component-based

development, and non-component based development

is provided.

In [4], authors discussed the key challenges

to the development of standard, complete and

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Conference on Advances in Engineering and Technology

(AET- 29th March 2014)

Maharishi Markandeshwar University 48 | P a g e

pervasive software quality models, solution to these

challenges and their importance. They discussed key

issues which need to be considered to develop a

widely acceptable standard software quality model.

Important issues which are posing obstacles to the

development of standard quality models are discussed.

They lay down the foundation for the development of

a component quality model which is comprehensive

and may be used to increase to reusability aspects of

components.

In [5], authors proposed explores the five

algorithms, Fletcher–Reeves Update Conjugate

Gradient (FRUCG) algorithm, Polak–Ribiere Update

Conjugate Gradient (PRUCG) algorithm, Powell-

Beale Restarts Conjugate Gradient (PBRCG)

algorithm, Scaled Conjugate Gradient (SCG)

algorithm, Self- Organizing/network algorithms based

Neural Network are experimented to develop the

reusability evaluation model for function oriented

software systems and the results are recorded in terms

of Accuracy, Mean Absolute Error (MAE) and Root

Mean Square Error (RMSE).

In [6], authors discussed a study of the reuse

metrics of three systems i.e. object oriented systems,

component based systems and service oriented

systems is made and proposed a model to bring out

the relationship between them. A template has been

designed to study and record how the metrics are

categorized and it forms the base for the evolution

based model. An evolutionary based model is

proposed which states the maturity level of reuse

metrics and identifies the gaps to measure complete

reusability for service oriented systems.

In [8], an author proposed a model and

discusses the main constituents of ontology of quality

federating all the aspects of Information System (IS)

components quality (software, data, models, etc.). In

order to operationalize the proposed ontology, an

approach is described that allows using the ontology

in order to achieve specific quality goals. QualOnto as

a framework is used to link together the IS

engineering process and the IS product, which could

serve as a basis for statistical studies on the

correlation between both process and product

qualities.

In [9], authors presented a new methodology

of Knowledge Management System (KMS)

implementation in a CBSE-oriented organization. A

case study of applying this methodology in an existing

CBSE organization is also presented. The main

objectives of methodology used are an early

elimination of risks and misconceptions by ensuring

short iterations, continuous integration and intensive

customer collaboration. The proposed methodology

requires less resources and budget than existing

methodologies.

In [10], authors proposed an algorithm in

which the inputs can be given to K-Means Clustering

system in form of tuned values of the Object Oriented

software component. A hybrid K-Means and Decision

tree approach is used to predict the reusability value

of object oriented software components based on the

metric values. The developed reusability model

produces high precision results.

In [12], authors made an analysis of the

conceptual elements behind Component-Based

Software Engineering (CBSE) and proposed a model

that support its quality evaluation and integrates the

product perspective, a view that includes components

and Component-Based Software (CBS), as well as the

process perspective, a view that represents the

component and CBS development life cycle. Two

findings are highlighted that are: 1) a close

relationship exists between both identified

perspectives: quality of a component directly

influences CBS quality; 2) the component models are

the backbone of these software systems.

In [13], authors described N-tier architecture

as data access architecture in a component based

application and is evaluated against the external and

internal quality factors. This establishes that an

enhanced component model (ECM) is a reliable

model. This expresses how data access objects (DAO)

in the DAO layer interacts with the business-tier and

data source in achieving reliable, reusable, robust and

scalable component model by implementing Data

Adapter interface.

In [15], authors presented a CBSE approach

that involves three contributions. The first

contribution is a component model that defines the

trust worthiness quality attributes as first class

structural elements. Second contribution is a process

model role. The third and final contribution is a

development framework of comprehensive tool

support.

In [17], authors made a survey and analysis

of current component models. Based on the analysis,

they are classified into a taxonomy based on

commonly accepted parameters for Component Based

Development. For each category in the taxonomy, its

key characteristics are described and evaluated with

respect to these parameters.

In [19], authors proposed a component

quality model which describes consistent and well-

defined characteristics, sub-characteristics, quality

attributes and related metrics for the components

evaluation. A preliminary evaluation to analyze the

results of using the component quality model is also

proposed.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Conference on Advances in Engineering and Technology

(AET- 29th March 2014)

Maharishi Markandeshwar University 49 | P a g e

III. PROPOSED WORK
Hereby, we are going to propose a model for

measuring quality component e.g. reusability of a

Component based Software Engineering model

through analyzing a series of design patterns which

are worldwide accepted as the reuse design

terminology for object oriented designing and hence

component based designing. Analyzing the entire

design pattern values obtained [31].

The object-oriented metrics proposed [19] and later

refined by the same authors can be summarized as

follows:

a. Weighted Methods per Class (WMC): This is a

weighted sum of all the methods defined in a class.

b. Coupling Between Object classes (CBO): It is a

count of the number of other classes to which a given

class is coupled and, hence, denotes the dependency

of one class on other classes in the design.

c. Depth of the Inheritance Tree (DIT): It is the length

of the longest path from a given class to the root class

in the inheritance hierarchy.

d. Number of Children (NOC): This is a count of the

number of immediate child classes that have inherited

from a given class.

e. Response for a Class (RFC): This is the count of

the methods that can be potentially invoked in

response to a message received by an object of a

particular class.

f. Lack of Cohesion of Methods (LCOM): A count of

the number of method-pairs whose similarity is zero

minus the count of method pairs whose similarity is

not zero.

Here we will use unsupervised method

because we don’t know in advance output values for

the corresponding design patterns [21] [27]. MatLab

will be used for the implementation purpose. Firstly,

analysis of Software Design Patterns through CK

metrics analysis is made. Then, Implementation of

the proposed model is done through Neural Network

using MatLab.

3.1 Software Design Pattern Analysis

Design patterns represent a recurring

solution to a software development problem within a

particular context. They have frequently been used to

guide the creation of abstractions in the software

design phase, necessary to accommodate future

changes and yet maintain architectural integrity.

These abstractions help us de-couple the major

components of the system so that each component

may vary independently. Here we are going to discuss

software design patterns in detail. Consider the

example of Abstract Factory design pattern as shown

in Fig 2.

Fig 2: Abstract Factory Design

Class/Matrix NOM DIT NOC CBO RFC

Abstract

Factory
2 0 2 0 2

Concrete

Factory 1
2 1 0 2 2

Concrete

Factory 2
2 1 0 2 2

Abstract

Product A
0 0 2 0 0

Product A2 0 1 0 0 0

Product A1 0 1 0 0 0

Abstract

Product B
0 0 2 0 0

Product B2 0 1 0 0 0

Product B1 0 1 0 0 0

Table 1: CK Matrix Analysis for Abstract Factory

Design

In the same way, CK matrix analysis for all

the design patterns is done. Table 1 shows the ck

matrix analysis for abstract factory design.

3.2 Neural Network Implementation

Hereby we have developed a Self

Organizing Map Neural Network to train the

network. Then summing up the computed weights

w.r.t. every metrics and dividing the sum by total

number of matrices which yields the optimized value

among the matrices. Neural Network training and

optimum value for the component based software

engineering model is shown in Fig 3.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Conference on Advances in Engineering and Technology

(AET- 29th March 2014)

Maharishi Markandeshwar University 50 | P a g e

Fig 3: Neural Network Training and Value for the

Proposed Model

IV. RESULT ANALYSIS
The experiment results for training of neural network

in the MatLab are shown in Table 2.

Table 2: Neural Network Analysis Values

Experiment Values

No. of training data 5 x 21 = 105

No. of epoch taken to

converge

200

Time taken to execute 2.94093

seconds

No. of outputs 5

The capability of neural network to

generalize and insensitive to the missing data would

be very beneficial. For training purpose all 21 design

patterns and 6 matrices are taken. Number of epochs

taken is 2000 to achieve high accuracy.

The results shown using MatLab through

execution of Neural Network are:

Performance can be improved by using:

Weighted Method per Classs (WMC): 6

Depth of Inheritance Tree (DIT): 6

Response for Class (RFC): 9

Number of Children (NOC): 6

Coupling Between Objects (CBO): 4

Total time elapsed in entire execution: 2.94093

seconds.

As per the results shown above, the model

proposes for the design pattern performance can be

improved by using the above values.

V. CONCLUSION & FUTURE SCOPE
The model proposed and illustrated here

provides an explicit process for adding quality-

carrying properties into software. CBSE is a

knowledge-intensive activity where collaborators

produce and consume knowledge during all the

development phases. CBSE is adding a lot of value to

rapid application development and is actively

contributing to better quality software systems.

In the paper, we proposed a model for

enhancing quality with respect to the Component

Based Software Engineering (CBSE) methodology.

This in total acts as input for the neural network. By

using the example of design patterns and unsupervised

neural network, we have proposed a model that

provides enhancing quality criteria for Software

Component Engineering model based on CK metric

values. If output may be known from the past values,

a supervised neural network may give better results.

Component modeling techniques, with which

we have compared our work, do not provide all the

tools necessary for rigorous analysis at different

stages of system lifecycle. The reason is that these

component models are designed and implemented for

different specific domains. In order to properly enable

the evaluation of software components, supplying the

real necessities of the software component markets, a

component quality model is strictly necessary. A more

elaboration on finding the appropriate size of software

with respect to the overhead for preparation of

evaluation is required. A full advantage of

component-based approach can be achieved when not

only the functional parts are reused, but also when this

approach leads to easier and more accurate

predictability of the system behavior.

REFERENCES
[1] Abhikriti Narwal, “Empirical Evaluation of

Metrics for Component Based Software

Systems”, International Journal of Latest

Research in Science and Technology,

1(4),2012,373-378.

[2] Amr Rekaby, Ayat Osama, “Introducing

Integrated Component-Based Development

Lifecycle and Model”, International Journal

of Software Engineering & Applications

(IJSEA), 3(6),2012, 87-99.

[3] Sandeep Srivastava, “Software metrics and

Maintainability Relationship with CK

Metrics”, International Journal of

Innovations in Engineering and Technology,

1(2),2012, 76-82.

[4] Simrandeep Singh Thapar, Paramjeet Singh,

Shaveta Rani, “Challenges to the

Development of Standard Software Quality

Model”, International Journal of Computer

Applications, 49(10),2012,1-7.

[5] Anupama Kaur, Himanshu Monga,

Mnupreet Kaur, Parvinder S. Sandhu,

“Identification and Performance Evaluation

of Reusable Software Components Based

Neural Network”, International Journal of

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Conference on Advances in Engineering and Technology

(AET- 29th March 2014)

Maharishi Markandeshwar University 51 | P a g e

Research in Engineering and Technology,

1(2),2010,100-104.

[6] G. Shanmugasundaram, V. Prasanna

Venkatesan, C. Punitha Devi, “Reusability

metrics - An Evolution based Study on

Object Oriented System, Component based

System and Service Oriented System”,

Journal Of Computing, 3(9), 2011,30-38.

[7] Aldeida Aleti, Indika Meedeniya,

“Component Deployment Optimisation with

Bayesian Learning”, ACM Journal, 2011,

11-20.

[8] Samira Si-saïd Cherfi, Jacky Akoka, Isabelle

Comyn-Wattiau, “Federating Information

System Quality Frameworks Using A

Common Ontology”, Proc. 16th

International Conference on Information

Quality, 3(4), 2011, 160- 173.

[9] Mostefai Mohammed Amine, Mohamed

Ahmed-Nacer, “An Agile Methodology For

Implementing Knowledge Management

Systems : A Case Study In Component-

Based Software Engineering”, International

Journal of Software Engineering and Its

Applications, 5(4),2011, 159-170.

[10] Anju Shri, Parvinder S. Sandhu, Vikas

Gupta, Sanyam Anand, “Prediction of

Reusability of Object Oriented Software

Systems using Clustering Approach”, World

Academy of Science, Engineering and

Technology, 43(1), 2010, 853-856.

[11] V. Lakshmi Narasimhan, P. T.

Parthasarathy, M. Das, “Evaluation of a

Suite of Metrics for Component Based

Software Engineering (CBSE)”, Issues in

Informing Science and Information

Technology, 6(1), 2009, 731-740.

[12] María A. Reyes, Maryoly Ortega, María

Pérez, Anna Grimán Luis E. Mendoza and

Kenyer Domínguez, “Toward A Quality

Model for CBSE”, International Conference

on Enterprise Information Systems, 6(2),

2009,101-106.

[13] R. Senthil, D. S. Kushwaha, A. K. Misra,

“An Extended Component Model and its

evaluation for Reliability & Quality”, in

Journal of Object Technology, 7(7), 2008,

109-129.

[14] Yoonjung Choi, Sungwook Lee, Houp Song,

Jingoo Park, SunHee Kim, “Practical S/W

Component Quality Evaluation Model”,

ICACT, 10,2008, 259-264.

[15] Mubarak Mohammad, Vasu Alagar, “A

Component-Based Software Engineering

Approach for Developing Trustworthy

Systems”, ACTS Report Series, Feb. 2008.

[16] Anita Gupta, Reidar Conradi, Forrest Shull,

Daniela Cruzes, “Experience Report on the

Effect of Software Development

Characteristics on Change Distribution”,

Springer Journal, 2008, 158–173.

[17] Kung-Kiu Lau, Zheng Wang, “Software

Component Models”, IEEE Transactions On

Software Engineering, 33(10),2007,709-724.

[18] Net Objective, “Design Patterns: From

Analysis to Implementation”, Manuals for

design patterns explained: A New

perspective for Object Oriented Design,

2007.

[19] Alexandre Alvaro, Eduardo Santana de

Almeida, Silvio Lemos Meira, “A Software

Component Quality Model: A Preliminary

Evaluation”, IEEE Proc. of the 32
nd

EUROMICRO Conference on Software

Engineering and Advanced Applications,

2006,444-454.

[20] Kilsup Lee, Sung Jong Lee, “A Quantitative

Software Quality Evaluation Model for the

Artifacts of Component Based

Development”, Proc. of the 6
th

 IEEE

International Conference on Software

Engineering, Artificial Intelligence,

Networking and Parallel/Distributed

Computing, 2005,551-560.

[21] Simon Haykin, Neural Networks: “A

Comprehensive Foundation”, Pearson

Education, 2002.

[22] Xia Cai, Michael R. Lyu, Kam-Fai Wong,

Roy KO, “Component-Based Software

Engineering: Technologies, Development

Frameworks, and Quality Assurance

Schemes”, IEEE, 2000, 372-379.

[23] John Grundy, Warwick Mugridge, John

Hosking, “Constructing Component-based

Software Engineering Environments: Issues

and Experiences”, Elsevier Journal of

Information and Software Technology,

42(2),2000,117-128.

[24] Neville I. Churcher, Martin J. Shepperd,

“Comments on - A Metrics Suite for Object

Oriented Design”, IEEE Transactions on

Software Engineering, 21(3),1995,263-265.

[25] R. Geoff Dromey, “A Model for Software

Product Quality”, IEEE Transactions on

Software Engineering, 21(2), 1995, 146-162.

[26] E. Gamma, R. Helm, R. Johnson, J.

Vlissides, “Design Patterns: Elements of

Reusable Object-Oriented Software”,

Addison Wesley, 1995.

[27] MatLab Neural Network 2010 Tool Box

Product Help.

